A Comparison of Temperature Density Forecasts from GARCH and Atmospheric Models

نویسندگان

  • James W. Taylor
  • Roberto Buizza
چکیده

Density forecasts for weather variables are useful for the many industries exposed to weather risk. Weather ensemble predictions are generated from atmospheric models and consist of multiple future scenarios for a weather variable. The distribution of the scenarios can be used as a density forecast, which is needed for pricing weather derivatives. We consider one to 10 dayahead density forecasts provided by temperature ensemble predictions. More specifically, we evaluate forecasts of the mean and quantiles of the density. The mean of the ensemble scenarios is the most accurate forecast for the mean of the density. We use quantile regression to debias the quantiles of the distribution of the ensemble scenarios. The resultant quantile forecasts compare favourably with those from a GARCH model. These results indicate the strong potential for the use of ensemble prediction in temperature density forecasting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Density Forecasting for Weather Derivative Pricing: A Comparison of GARCH and Atmospheric Models

Weather derivatives enable energy companies to protect themselves against weather risk. Weather ensemble predictions are generated from atmospheric models and consist of multiple future scenarios for a weather variable. They can be used to forecast the density of the payoff from a weather derivative. The mean of the density is the fair price of the derivative, and the distribution about the mea...

متن کامل

Forecasting Crude Oil prices Volatility and Value at Risk: Single and Switching Regime GARCH Models

Forecasting crude oil price volatility is an important issues in risk management. The historical course of oil price volatility indicates the existence of a cluster pattern. Therefore, GARCH models are used to model and more accurately predict oil price fluctuations. The purpose of this study is to identify the best GARCH model with the best performance in different time horizons. To achieve th...

متن کامل

The Stock Returns Volatility based on the GARCH (1,1) Model: The Superiority of the Truncated Standard Normal Distribution in Forecasting Volatility

I n this paper, we specify that the GARCH(1,1) model has strong forecasting volatility and its usage under the truncated standard normal distribution (TSND) is more suitable than when it is under the normal and student-t distributions. On the contrary, no comparison was tried between the forecasting performance of volatility of the daily return series using the multi-step ahead forec...

متن کامل

Modelling Realized Covariances and Returns∗

This paper proposes new dynamic component models of returns and realized covariance (RCOV) matrices based on time-varying Wishart distributions. Bayesian estimation and model comparison is conducted with a range of multivariate GARCH models and existing RCOV models from the literature. The main method of model comparison consists of a term-structure of density forecasts of returns for multiple ...

متن کامل

Management Working Papers School of Management Forecasting the weekly time-varying beta of UK firms: comparison between GARCH models vs Kalman filter method

This paper investigates the forecasting ability of four different GARCH models and the Kalman filter method. The four GARCH models applied are the bivariate GARCH, BEKK GARCH, GARCH-GJR and the GARCH-X model. The paper also compares the forecasting ability of the non-GARCH model the Kalman method. Forecast errors based on twenty UK company weekly stock return (based on timevary beta) forecasts ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005